Vibrational Frequency Isotope Shifts for SO₃*

LLEWELLYN H. JONES

Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico 87544, U.S.A.

Stølevik et al.¹ have recently determined the harmonic force constants of SO_3 from the vibrational frequencies and Coriolis constants of the normal species. In this paper ¹ they have included some calculations of frequencies of $S^{18}O_3$ and have stated that "one finds that the F_{12} constant could be fixed within ± 0.06 mdyne/Å if one could measure ν_3 * (for $S^{18}O_3$) with an accuracy of about ± 5 cm⁻¹, or ν_4 * with about ± 1 cm⁻¹." These limits seem very generous compared to other systems; however, I have been assured ² that they are not typographical errors. If these limits are indeed correct, the observation of the vibrational frequencies of $S^{18}O_3$ would be extremely useful for estimation of the force constants. Therefore, I have

Table 1. E' Symmetry force constants of SO₃.

F_{12}^{a}		-0.097	$-0.297^{\ b}$	-0.497
F_1		10.1707	10.5061	10.8119
$\vec{F_2}$		0.6357	0.6229	0.6119
-				
$^{32}{\rm S}^{16}{\rm O}_3$	$\nu_3^{\ c}$	1391.1	1391.1	1391.1
•	$\nu_{\scriptscriptstyle A}$	531.0	531.0	531.0
	•			
$^{32}S^{18}O_{3}$	$\nu_{\rm a}$	1349.0	1347.5	1346.0
Ü	v_4	504.6	505.1	505.7
$^{34}S^{16}O_{3}$	$\nu_{\rm a}$	1372.1	1372.9	1373.6
	v_4	528.8	528.5	528.2
	- 4			
$^{84}S^{18}O_{3}$	$\nu_{_3}$	1329.2	1328.5	1327.8
•	$v_{\scriptscriptstyle A}$	502.5	502.8	503.1
	- 4			
$v_3(^{34}{ m S}^{16}{ m O}_3)$				
$-\nu_{3}^{(32}S^{18}O_{3}^{3)}$		23.1	25.4	27.6
3/	- 37			

^a Units of F_i are millidynes per Ångström. ^b This is close to the solution which fits the Coriolis constant, ζ_3 .¹

made calculations of the frequencies of $^{32}\mathrm{S}^{18}\mathrm{O}_3$, $^{34}\mathrm{S}^{16}\mathrm{O}_3$, and $^{34}\mathrm{S}^{18}\mathrm{O}_3$ in which F_{12} (E') is varied and $F_1(E')$ and $F_2(E')$ are chosen to fit the E' frequencies of the normal species. The results are presented in Table 1.

From these results it is apparent that to determine F_{12} to ± 0.06 mdyne/Å one must measure ν_3* (for ${\rm S}^{18}{\rm O}_3$) with an accuracy of about ± 0.4 cm⁻¹ or ν_4* with an accuracy of ± 0.2 cm⁻¹ rather than ± 5 cm⁻¹ and ± 1 cm⁻¹, respectively. Actually it is the isotope shift, $\nu_3(^2{\rm S}^{16}{\rm O}_3) - \nu_3*(^2{\rm S}^{18}{\rm O}_3)$, which must be determined to ± 0.4 cm⁻¹. Even this is not unrealistic, especially if extremely sharp lines can be obtained for a dispersion in an argon matrix at very low temperatures.

As Table 1 shows, even more useful would be the difference $\nu_3(^{34}\mathrm{S}^{16}\mathrm{O}_3)$ — $\nu_3(^{32}\mathrm{S}^{18}\mathrm{O}_3)$ which would only have to be known to ± 0.7 cm⁻¹ to fix $F_{12}(E')$ to ± 0.06 mdyne/Å.

Perhaps it should be mentioned that a knowledge of anharmonicity corrections would be necessary for determining the true harmonic force constants, though the results on the observed frequencies should be fairly good for this molecule.

- Stølevik, R., Andersen, B., Cyvin, S. J. and Brunvoll, J. Acta Chem. Scand. 21 (1967) 1581.
- 2. Cyvin, S. J. Private communication.

Received May 6, 1968.

On the Hybridization in the $S_N 2$ Mechanism in Nucleophilic Displacement of Carbon

OLLE MARTENSSON

Quantum Chemistry Group, Uppsala University, Box 518, S-751 20 Uppsala 1, Sweden

Several concepts in chemistry, such as bond direction and bond angle, have been explained conceptually in a simple way by means of models based on concepts from quantum chemistry (such as sym-

Acta Chem. Scand. 23 (1969) No. 1

^c Units of v_i are cm⁻¹.

^{*} This work done under the auspices of the U.S. Atomic Energy Commission.